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Abstract

In the last decade, several authors have proposed edge preserving regularization
(EPR) methods for solving ill posed problems in early vision. These techniques
are based on potentials derived from robust M–Estimators. They are capable
of detecting outliers in the data, …nding the signi…cant borders of a noisy image
and performing an edge–preserving restoration. These methods, however, have
some problems: they are computationally expensive, and often produce solutions
which are either too smooth or too granular (with borders around small regions).
In this paper we present a new class of potentials that permits separate control
of robustness and granularity, producing better results than the classical ones
in both scalar and vector-valued images. We also present a new fast, memory-
limited minimization algorithm.
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1 INTRODUCTION
In the …elds of image processing, image analysis and computer vision, one deals
with the problem of reconstructing an image bf from noisy and degraded obser-
vations g. Consider the following model of the observations:

g = F
³

bf
´

+ ´; (1)

where ´ is additive noise and F is a linear operator that is assumed to be known.
For example in optical blurring, F corresponds to the convolution with the Point
Spread Function (PSF) of the imaging system. In other cases, F can be a linear
approximation of a non-linear transformation (e.g. in the computation of optical
‡ow).

The information provided by the data and the direct model (1) is (in general)
not enough for an accurate estimation of bf , so that the regularization of the
problem is necessary. That means that, a priori information or assumptions
about the structure of bf need to be introduced in the reconstruction process.
The regularized solution f¤ is computed by minimizing an energy functional U :

f¤ = arg min
f

U(f) (2)

where

U(f) = D(f) + ¸R(f): (3)

The data term D establishes that the reconstruction f should be consistent
with the data g: The regularization term R imposes a penalty for violating the
a priori assumptions, and the relative contribution of each term to the global
energy is weighted by the parameter ¸. The Data term can been written as

D(f) =
X

r

½D (tr (f))

where t is the residual error de…ned by

tr (f) = F (f)r ¡ gr;

and r = (x; y) represents a site in the pixel lattice L, and ½D is a potential
function that de…nes the residual norm; the subindex denotes that this potential
is associated with the data term. In the framework of Bayesian regularization
[1], D is chosen as the negative log–likelihood and the prior constraints are
incorporated in the form of a priori (Markov Random Filed) model for f , so
that R(f) takes the form of a sum, over the cliques of a given neighborhood
system, of a set of “potential functions” supported on those cliques. One may
take for instance as the neighborhood N of a pixel r its 8 closest neighbors:

Nr = fs : jr ¡ sj < 2g
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and cliques of size 2 hr; si that correspond to horizontal, vertical and diagonal
pixel pairs, so that R(f) takes the form:

R(f) =
X

r

X

s2Nr

½R(urs (f)):

where the residual error for the regularization term is de…ned by

urs (f) = fr ¡ fs: (4)

and ½R is a potential function. For instance, the homogeneous spring model RS

is obtained by assuming that ´ corresponds to Gaussian noise:

½D (tr (f)) = (F (f)r ¡ gr)
2 : (5)

and choosing ½R as a quadratic potential over the …rst di¤erences:

½R(urs (f)) = drs (fr ¡ fs)
2 (6)

with

drs = jr ¡ sj¡1:

This quadratic potential corresponds to the a priori assumption that the
original data bf is globally smooth. Then, assuming that F is linear, the cost
functional that results from potentials (5) and (6) is quadratic:

U1(f) =
X

r

(
jtr (f)j2 + ¸

X

s2Nr

drs jurs (f)j2
)

(7)

This cost functional is not robust to outliers. In the image restoration con-
text, the outliers are located at those sites where the assumptions implicit in
the cost function are not ful…lled. In particular, for a regularization term that
assumes global smoothness, the outliers correspond to the edges in the image.
As a consequence, the potential function (6) will produce an over–smoothing of
the real edges of the image.

To alleviate this problem, there have been proposed robustpotential func-
tions for the data and regularization terms. This regularization technique is
usually based on potentials derived from robust M–Estimators and is capable of
detecting outliers in the data, …nding the signi…cant edges of a noisy image and
performing an edge–preserving restoration. However, there are some problems:
the robust potentials that are in use have a single parameter that controls the
minimum residual magnitude that corresponds to an outlier; it often happens
in noisy images that if this parameter is too small, many small regions generate
edges around them so that the solutions appear granular, while if the value of
this parameter is increased, some true edges are not preserved Another problem
is that the convergence of the algorithms that have been proposed for the min-
imization of the corresponding cost function are relatively slow, making these
methods computationally expensive.
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The propose of this paper is to present a formulation for robust potentials
that produces faster and better behaved algorithms that result in better recon-
structions and a signi…cant time processing reduction.

The organization of the paper is as follows: in section II, a brief introduction
to robust regularization is presented. Section III introduces the new formula-
tion for robust potentials. Also, in that section, we show how to write robust
energy terms for vector valued data. In section IV, we present a non-linear
Conjugated Gradient algorithm for half–quadratic regularized functionals with
minimal memory requirements. Experiments that demostrate the performance
of the new potentials and the algorithms introduced herein are presented in
section V. Finally, our conclusions are given in section VI.

2 REVIEW OF ROBUST REGULARIZATION
BASED ON M-ESTIMATORS

To solve the problem of over–smoothing the real borders in f , potential func-
tions for the data and regularization terms that increase at a smaller rate than
the quadratic potential have been used [3][4][5][6][7][8][11][10]. These robust po-
tentials ½(t) (that correspond to robust objective functions used in the statistical
literature[7],) have the following characteristics [8][12][13]:

1. ½(t) ¸ 0 8t with ½(0) = 0;

2. ½0 (t) ´ @½ (t (f)) =@f exists.

3. ½(t) = ½(¡t), the potential is symmetric

4. ½0(t)
2t exists

5. limt!+1
½0(t)
2t = 0

6. limt!0+
½0(t)
2t = M, 0 < M < +1:

(8)

Condition (8.1) establishes that a residual equal to zero must produce the
minimum cost. Condition (8.2) constrains ½ to be di¤erentiable, so that one can
use e¢cient deterministic algorithms for minimizing the cost function (really,
to compute a local minimum). Condition (8.3) constrains ½ to penalize equally
positive and negative values of t. Finally, conditions (8.4 to 8.6) imposes the
robustness condition. A robust potential corresponds to (in general) a non-
convex potential that grows at a slower rate than the quadratic one. A local
minimum of the robust potential based energy functional

U2(t) =
X

r

(
½D (tr (f)) + ¸

X

s2Nr

½R(urs (f))

)
(9)
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is computed by solving the system

ÃD (tr (f)) + ¸
X

s2Nr

ÃR(urs (f)) = 0: (10)

where the derivatives

ÃD(tr(f)) = @½D(tr(f))=@fr and ÃR(urs (f)) = @½R(urs (f))=@fr

are called the in‡uence functions. One can also de…ne:

!r =
ÃD(tr(f))

2tr(f)
and !rs =

ÃR(urs (f))

2urs (f)
(11)

as the weight functions. Then (as was shown in [4][5][8][12]), one can solve the
non–linear system (10) with the following two–step iterative algorithm:

Algorithm 1 Weighted linear system

Given an initial guess for f;
Repeat:

1. Compute the weights !r and !rs using (11).

2. Solve the system

!rtr(f) +
X

s2Nr

!rsurs (f) = 0

for f, keeping !r and !rs …xed.

Until convergence.

(12)

The ARTUR algorithm reported in [8] corresponds to algorithm 1 but using
as starting point for f an homogeneous image equal to zero.

In References [7] and [8] one can …nd pictorial summaries of the robust
potential function used in robust regularization. One may de…ne a classi…cation
of potentials functions based on the shape of the in‡uence functions Ã [13]:

1. Monotone Ã (MT). Ã(t) is constant for jtj ¸ µ: Where µ is a given threshold
An example is the Huber´s potential function [12]:

½h(t) =

½
t2 jtj < 1=2

(jtj ¡ (1=2)2) otherwise

2. Soft redescender Ã (SR). One has Ã(1) = 0: An example is the Cauchy´s
potential function:

½c(t) = log(1 + t2)
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3. Hard redescender Ã (HR). One has Ã(t) ¼ 0 for jtj ¸ µ; where µ is a given
threshold. This kind includes the widely used Welsch and Tukey (bi-
weight) potential functions. For example the Tukey´s potential function
is de…ned as:

½b(t) =

½
(1 ¡ (1 ¡ (2t)2)3) jtj < 1=2

1 otherwise:

Plots of the four classes of potential functions are shown in Figure 1. The
corresponding in‡uence functions and the weight functions are also illustrated.
In order to choose the “right” ½–function for computer vision problems, we need
take into account the following:

1. Robustness to outliers. That is, one wants to reduce the e¤ect of large
errors in the solution.

2. Computational di¢culties. The minimization algorithm must be stable
and have fast convergence.

In the robust statistics literature [16] one can …nd measures of robustness
for potential functions. These measures are derived from the in‡uence function;
they show the in‡uence of large errors (outliers) and small errors (measurement
errors); other common measure is the breakdown point (that in general does
not depend on the shape of the potential ½) that measures the robustness with
respect to large quantity of outliers. The HR (potentials that reject extreme
outliers completely) and SR (potentials that reduce considerably the e¤ect of
extreme outliers) classes are preferred for regression and estimation problems
in both contexts: statistics [13][15][16] and image processing–computer vision
[3][4][6] [7][8][10][17][18][19][20][21].

For the case that concerns this paper (image restoration), the robust meth-
ods are capable of detecting the signi…cant outliers in the data, …nding edges
(outliers with respect the prior assumption) of a noisy image and performing
an edge–preserving restoration. However, the HR–potentials do not guarantee
uniqueness of the solution [7]. As a consequence, a good initial guess must be
provided in order to avoid to be trapped by a “bad” local minimum. Another
problem is that there is no explicit control of the granularity of the solution,
and as a result one may have either inaccurate de…nition of edges or an over
detection of small details (see Figure 4-c). Finally, the convergence rate of
the minimization algorithm 1 is relatively slow, so that it is computationally
demanding.

In an attempt to solve these problems, in [8] the initial point is chosen as
an homogeneous image equal to zero (algorithm ARTUR). This reduces the
granularity, but it also reduces the accuracy of the computed edges (see Figure
4–f) and does not contribute to the reduction of the computation time. Another
improvement, introduced in [7], is to make the potential in the data term robust,
which allows one to eliminate unstructured outliers; this however, may cause
Algorithm 1 to become unstable because the weights !r and !rs can both be
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equal to zero (because of condition (8.5)), or produce ill–conditioned systems for
small values of these weights. Also, this formulation does not consider that in
the image processing context, outliers in the data may be structured (there may
be small and well de…ned regions, see Figure 4–c), so that it is not clear how
to constrain granularity. In [7][9][10] and [18] potentials that penalize thickness
and promote the continuity of the borders are introduced. The result is a better
de…nition of the edges, but the computational time is increased because there
is no closed formula for the weights, so that they must be computed for each
iteration as the solution of a non–linear system which causes a signi…cant slow–
down of the algorithm.

3 POTENTIALS FOR EDGE PRESERVING
REGULARIZATION WITH
GRANULARITY CONTROL

In this section we propose a method for stabilizing edge-preserving potentials
that produces faster and better behaved algorithms. First, we note that condi-
tion (8.5) needs to be rede…ned in order to avoid that the weights !r and !rs

can both be close to zero, ill–conditioning the system (10). The new condition
is:

lim
t!+1

½0
R (t)

2t
= ¹ (13)

where ¹ 2 (0; 1] is a positive parameter. Now, the granularity of the solution
has to be controlled, so that a large and well de…ned region is preferred over a
group of small regions (well de…ned regions are such that the weights at their
borders are zero if a HR–potential is used), this is illustrated in Figure 2. In
order to introduce this control in the robust potential, it is necessary to include
an additional term in the cost functional (9), that assigns a small additional
cost to large jumps that are assigned a constant cost by the potential ½Q. An
easy way to stabilize the system and at the same time control granularity is
simply to add a quadratic term to the HR–potential ½H , so that it has heavier
“tails”. The resulting regularization potential ½Q is given by

½Q(urs (f) ; k2; ¹) = ¹drs[urs (f)]2

+(1 ¡ ¹)drs½H (urs (f) ; k2) ; (14)

where the ¹ parameter controls the granularity of the solution and k2 is a positive
scale parameter. Note that for the extreme value ¹ = 1, ½R is quadratic (non-
robust) and strongly penalizes the granularity. When ¹ is close to zero 0; the
potential is HR–robust and promotes piecewise smooth reconstructions. Small
values for ¹ allow smooth changes inside the regions and control the size of
the grain in the reconstruction. The form of the ½Q potential together with its
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in‡uence and weight functions is presented in Figure 3. These types of in‡uence
functions corresponds to the so–called Quasi–robust estimators in the statistics
literature [22]. In all our experiments we use

½H (x; k) = 1 ¡ 1

2k
exp(¡kx2);

where k is the scale parameter, and for the data term we set

½D(t; k) = ½H (t; k) ;

then we have:

UN(f) =
X

r

(
½H (tr (f) ; k1) + ¸

X

s2Nr

½Q (urs (f) ; ¹; k2)

)
; (15)

where k1 is the scale parameter for the data term. The minimization of (15)
with respect to f is computed by solving the non–linear system

@

@fr

(
½H (tr (f) ; k1) + ¸

X

s2Nr

½Q (urs (f) ; k2; ¹)

)
= 0

this non–linear system can be written in matrix form:

Wff = bg (16)

where the matrix Wf depends on f and bgr = [!D]rgr; with !D as the corre-
sponding vector of weights for the data term. As ½Q satis…es (8) but (8.5) is
replaced by (13), then, (16) cannot become singular. In section IV, we present
an e¢cient Conjugate Gradient algorithm for solving (16), which has a better
convergence rate than Algorithm 1.

3.1 Robust Regularization for Vectorial Data

In the restoration or analysis of vector-valued images f = [f1; f2; : : : ; fM ]T (e.g.
optical ‡ow and color images processing) given the data g = [g1; g2; : : : ; gM ]T ;
it is necessarily to couple the process over the M channels.

For illustration proposes, we assume that the channels of f are indepen-
dently acquired, so that the outlier rejection in the data term is decoupled. On
the other hand, the outliers corresponding to the regularization term are cou-
pled because we expect that the joint contribution of all channels results on a
better detection of the edges. Then the robust potentials for the data and the
regularization terms (respectively) are

D(f) =
X

m

X

r

½H (tr (fm) ; k1)
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and

R(f) =
X

m

X

r

X

s2Nr

b½R

¡¯̄
urs

¡
f
¢¯̄

; k2; ¹
¢

with m = 1; :::;M; where
¯̄
urs

¡
f
¢¯̄2

= (f1;r ¡ f1;s)
2 + (f2;r ¡ f2;s)

2 + : : : +

(fM;r ¡ fM;s)
2. The solution f is computed by solving

@

@fm;r

"
½H

µ
tr (fm)

k1

¶
+

X

s2Nr

b½R

¡¯̄
urs

¡
f
¢¯̄

; k2; ¹
¢
#

= 0: (17)

4 MINIMIZATION ALGORITHM
The robust cost functionals presented above are non–quadratic functions with a
large number of variables. The minimization algorithms based on the iterative
solution of a weighted linear system [e.g., based on Algorithm 1 (10)] as the
one used in [4][8] are relatively slow. This is particularly critical in the case of
processing three–dimensional (3D) data as in the case of 3D image registration
[21]. If one wants to accelerate the computation of the solution, the use of spe-
cialized algorithms for directly solving the non–linear equation system (16) (as
the non–linear conjugate gradient (NLCG)[23] or the Newtonian type ones[24],)
are not a good choice. The reason its that, for example, in order to guarantee
convergence, the NLCG algorithms require that at each iteration, the partial
solution guarantees a su¢cient reduction in the cost U(f) [25], that is

U(fn+1) � (1 ¡ ")U(fn):

where " 2 (0; 1) is a small positive constant. In order to satisfy this constraint,
the NLCG algorithm must perform the expensive evaluation of the cost function
at each iteration. On the other hand, the Newtonian type algorithms (say,
the Gauss–Newton method), additionally need to compute the product of an
approximation to the Hessian of U(f) and a vector, this computation being
more expensive than evaluating the energy.

This section presents an e¢cient conjugate gradient algorithm for minimizing
(computing a local minimum of) non–quadratic functionals U(f) that are sums
of half-quadratic potentials. Before to introducing the HQCG algorithm, we
analyze the alternated minimization strategy used by Algorithm 1.

If the a potential ½ full…ls conditions (8) in its original form or with (13)
instead (8.5), then there exists a function Ã that penalize an over detection of
outliers; in this case ½ has an equivalent half–quadratic formulation:

½(z) = min
!

e½(z; !);

where e½(z; !) = z2! + Ã(!) [4][5][7][8]. In the half–quadratic formulation, one
may consider that the weights [given by (11)] result from minimizing the poten-
tial e½ w.r.t. !. Thus, Algorithm 1 is performing by the alternated minimization
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w.r.t. t, !r , and !rs: This means that the non-linear system (16) is solved by
the iterative scheme:

Wf tft+1 = bgt: (18)

In a half-quadratic sense, the computation of the matrix Wft corresponds the
minimization w.r.t. the weights.

The problem with the alternated minimization strategy is that the computa-
tion of the weight matrix W and the minimization of the weighted linear system
(18) are decoupled, which decreases the e¢ciency of the method.

The method we propose is based instead in the direct minimization of (15)
using non–linear conjugated gradient. This general algorithm, however, can
be made more e¢cient, in this case taking advantage of the half–quadratic
structure; in particular, this structure allows one to derive a formula for the
optimal step size at each iteration: since the minimizer of (15) satis…es (18),
where Wft is a positive de…nite matrix, the optimal step size

®n = min
®

U(fn + ®sn)

may be computed as

®n =
rT
n rn

sT
nWf tsn

;

where rn and sn are the currents residual vector and descent direction, respec-
tively.

The resulting HQCG algorithm is:

Algorithm 2 HQCG

Set n = 1; ¯ = 0; f0 equal to an initial guess.
Repeat:

1. Set An = Wfn .

2. rn = bgn ¡ Anfn

3. if(n 6= 1) ¯ = max
n

0; rT
n (rn¡rn¡1)

rT
n¡1rn¡1

o

4. sn = rn + ¯sn¡1

5. ®n = rT
n rn

sT
n Asn

6. fn+1 = fn + ®nsn; n = n + 1:

Until jrnj < ".
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Now, we explain each step in detail. Step one corresponds to updating the
weights !r , and !rs, i.e., one step of the alternated minimization in the half–
quadratic sense. The gradient r is updated in step 2. As system A is changing
at each iteration, we cannot guarantee that the gradient at iteration n is normal
to the last descending direction sn¡1(i.e. in general rT

n sn¡1 6= 0); so that we
compute ¯ with the Fletcher–Reeves (FR) formula with restarting, which is the
one generally used in the NLCG algorithms. This FR formula has demonstrated
to have better performance in the case of non–linear systems than the Polak–
Riviere formula [26].

Note that since we are computing the optimal step size, the condition

U(fn + ®nsn) � (1 ¡ ")U(fn):

is automatically satis…ed.

5 EXPERIMENTS
We present a set of experiments for illustrating the performance and viability
of the robust potential with granularity constraint. To isolate the e¤ect of k2

and ¹, for these experiments we kept the value of k1 at k1 = 1:0 (so that ½D is
in fact a non–robust potential)

5.1 Segmentation

In the …rst set of experiments, we study the in‡uence of the 2 parameters that
control edge preserving and granularity [i.e. k2 and ¹; respectively in (14)] in
the …ltered image. The input image (Fig. 4–a) is an axial section of a magnetic
resonance image of the brain, with the gray levels normalized in the interval [0,1].
The task in this case is to segment the brain from non–brain tissue, eliminating
as much unwanted detail as possible, without distorting the position of the brain
/non-brain (B–NB) boundary.

The starting point for HQCG algorithm was the original image. In all the
cases we used ¸ = 200. Fig. 4–b shows the restoration with k2 = 80; and
¹ = 0 (maximum granularity). As one can see, there is a lot of unwanted
detail. If the edge preserving parameter k2 is decreased (by setting k2 = 60
and ¹ = 0) the image of the Fig. 4–c is obtained. Note that some of detail
is eliminated (although not completely), but the B–NB boundary is lost. On
other hand, if ¹ is increased to 0:03 (for k2 = 800) one obtains the image of
Fig. 4-d, in which the unwanted detail is smoothed out without dislocating
the B–NB boundary. The evaluation of the weight function for the potential
½Q(urs (f) ; ¹; k2) is shown in Fig. 4–e. As a comparison, in Fig. 4–f we present
the …ltered image with the ARTUR algorithm [8], using the Geman–McClaude
potential ½GM(t) = t2=(k2+t2) [3] in the regularization term, which is considered
the one that gives the best results [8]. The parameters where hand–adjusted to
get the best possible results; their value was ¸ = 10; k2 = 600. In this case the
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starting point was an homogeneous image equal to zero, as is recommended in
[8].

5.2 Denoising Vectorial Images

We illustrate the e¤ect of the operation over vectorial images by denoising a color
image (channels red (r), green (g) and blue (b)). First row in …gure 7 shows
the RGB channels of a color image. Second row shows the result of processing
every channel independently with an HR–potential in the regularization term
(¸ = 50, k2 = 300, and ¹ = 0). As one can appreciate, the edges are not well
detected and the images are still noisy. Third row shows the e¤ect of coupling
the HR–potential over all the channels (¸ = 50, k2 = 75, and ¹ = 0). In
spite the fact that there is an improvement in the computed images, they are
still noisy and the borders are not well preserved. Finally, fourth row shows
the computed images that result from coupling the processing over the three
channels and considering a penalization over the granularity (¸ = 50, k2 = 300,
and ¹ = 0:01). The improvement is evident: the edges are well preserved and
the noise is removed.

5.3 Performance of the HQCG Algorithm

Here we present a comparison of the performance of the algorithms HQCG and
ARTUR. The conditions of the test correspond to the recommended in Ref. [8]
for the ARTUR algorithm: the starting point was an homogeneous image equal
to zero, which contributes to give non–granular results [8], so granularity was not
constrained in this experiment; at each iteration both algorithms “introduce”
edges. The parameters were ¸ = 30, k2 = 600 and ¹ = 0. The minimization of
the half-quadratic cost in ARTUR algorithm was computed by performing 20
iterations of the linear conjugate gradient algorithm (ARTUR–CG).

In …gure 6, panel (a) shows the real image used for the test. Panels 6–b, 6–c
shown the corresponding …ltered images after 30, and 70 iterations (respectively)
of the HQCG algorithm. Panel 6–d the resulting image after 300 iteration of the
ARTUR algorithm. One can note that the dial disc of the telephone is starting
to be de…ned in panel (a) while in the iteration 300 of ARTUR algorithm [panel
(d)] is still imperceptible; besides, the edges in the soccer ball are better de…ned
and allocated by HQCG than by ARTUR. The computation times in Fig. 6
correspond a pentium III at 800 Mhz based workstation. The evaluation of the
cost function versus the iteration number is plotted in …gure 7. As one can see,
the HQCG presents a fast convergence rate and a smoother transition between
iterations. Note however that one HQCG iteration takes 1.5 times an ARTUR
iteration.

5.4 Computation of the Optical Flow

The last experiment illustrates the performance of the presented technique in
a classical computer vision problem: the computation of optical ‡ow (OF).
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Introducing in the Horn-Shunck [27] formulation for OF the robust potential,
one gets the energy functional:

U(w) =
X

r2L

(
½H (tr (w) ; k1) + ¸

X

s2Nr

b½R (jurs (w)j ; k2; ¹)

)

where tr (w) = wT
r rEr and urs (w) = wr ¡ ws; the elements of the vector

rE´ [Ex; Ey; Et]
T represent the partial derivatives of a pair of images with

respect to x, y, and t, respectively. The elements u and v of the vector …eld
w = [u; v; 1]T represent the component of the OF in the x and y directions,
respectively. Figs. 8–a and 8–b show a synthetic image pair with a small square
moving down and to the right. The computed OF …eld with quadratic potentials
is shown in 8–c, and the OF computed with the presented technique in Fig. 8–d.

6 CONCLUSIONS
We have presented in this paper a “Quasi–robust” potential (QR) for edge–
preserving regularization, that is formed by a convex combination of a robust
(hard–redescending) potential and a quadratic one. We have shown that this
allows one to control both the edge preserving and the granularity of the solu-
tion in a more accurate way. We have also presented an improved minimization
algorithm for the corresponding cost function (Half-quadratic conjugated gradi-
ent), that permits one to obtain restorations that are of better quality that those
obtained with other algorithms considered as the state of the art at a fraction
of the computational cost. In the experiments presented here, we have used the
QR potentials only in the regularization term; it is also possible however, to use
them in the data term ½D to further improve the solution, particularly for high
noise levels.

The added quadratic term acts as an stabilizer (regularization term) of the
conjugated gradient algorithm avoiding the ill–conditioning of the resulting non–
linear system because the weight functions (for the data and regularization
terms) cannot be both zero (or very small). The combination of the QR poten-
tials and the HQCG algorithm allows one to have a more graceful evolution of
the solution at each iteration.

From the experiments we have performed, we have noted that the HQCG
algorithm has the nice property of being “continuous” with respect the param-
eters (including the initial conditions), in the sense that its evolution is smooth
(see Fig. 7), which allows one to observe this evolution and stop by hand when
a solution that is perceptually “optimal” is reached even when the algorithm
has not converged (see Fig. 6)
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Figure 1: Examples of potentials with monotone, soft–redescending and hard–
redescending in‡uence functions.

Figure 2: Desired behavior of the reconstruction algorithm: large regions with
well–de…ned edges (middle) are preserved, but small regions are not (bottom)
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Figure 3: Potential ½Q, in‡uence Ã and weight ! functions with explicit control
over the de…nition and granularity
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(b)

(d)

(f)

(a)

(c)

(e)

Figure 4: Segmentation of brain/non–brain tissue.(a) axial section of a MRI.
(b) Restoration with HQGN with maximum granularity control (k2 = 80 and
¹ = 0). (c) Restoration with HQGN algorithm with k2 is decreased (k2 = 60
and ¹ = 0). (d) Controlling granularity. Restoration with HQGN algorithm
with k2 = 800 and ¹ = 0:03. (e) Boundaries in panel e. (f) Filtered image with
the ARTUR algorithm using the Geman–McClaude potential.

18



r g br g b

Figure 5: Vectorial valued image processing (channels red, green and blue of
a color image). First row, noisy data. Second row, independently computed
channels with a HR–potential. Third row, coupled computed channels with a
HR–potential. Fourth row, coupled computed channels with a HR–potential
and granularity constrain.
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(a)

(c) (d)

(b)(a)

(c) (d)

(b)

Figure 6: (a) Real image. Filtered with HQCG after (b) 30 iterations (6 secs.)
and (c) 70 iterations. (14 secs.) (d) Filtered with ARTUR after 300 iterations
(40 secs.).
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Figure 7: Preformance of the algorithms HQCG (bold line) and ARTUR–CG.
Values of the cost function versus iteration number.
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Figure 8: Optical ‡ow. (a) and (b) synthetic image pair with moving square.
(c) Computed OF with quadratic potentials and (d) with robust potentials.
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